[生命工学科] (バイオモデル)

生命機能を理解し、その利用技術を学ぶ

- バイオを応用したものづくりに興味がある
- ・医療産業・食品分野で活躍する技術者になりたい
- バイオテクノロジーを勉強したい

得られる知識・スキル

- ・細胞培養とバイオプロセスの技術
- ・細胞、遺伝子、発生の知識と応用
- ・微生物と食・健康に関する知識

活躍できるフィールド

・医療関連産業、製薬産業、食品産業、 > 公務員

その他の進路

· 大学院進学等

【専門科目履修モデル】

年 次	1 年次		2年次		3年次		4 年次	
	前期	後期	前期	後期	前期	後期	前期	後期
	◎共生科学入門②	◎生命研究倫理学①	基礎統計学②	●生物有機化学②	●技術英語②	●バイオインフォマティクス②	◎生命工学卒業論文⑥	(生命工学卒業論文)
	◎生命環境基礎ゼミ②	◎生物資源実習①	基礎統計学演習②	◎発生工学②	◎化学実験②	●分子発生	◎科学英語演習 I②	◎科学英語演習 II②
	◎生物学概論②	食物科学入門②	動物解剖生理学②	●応用微生物学 II②	◎生化学実験②	· 幹細胞生物学②		
	◎基礎数学②	◎基礎解析学②	◎細胞生理学②	◎生化学 II②	◎微生物学実験②	◎細胞生物学実験②		
	◎基礎数学演習②	◎基礎有機化学②	◎応用微生物学 I ②	◎分子生物学 II②	◎分子生物学実験②	◎発生工学実験②		
	基礎環境化学②	◎基礎生化学②	◎生化学 I②	●構造生物学②	機能成分学②	◎生命工学研究室実習①		
		生物分析化学②	◎分子生物学 I②	基礎栄養学②	インターンシップ [°] I①	農作物病理学②		
		◎基礎微生物学②	◎生物化学工学②	基礎神経生理学①	特別講義 I①	特別講義 III①		
		◎創薬概論①	●生命科学・医学の	基礎人体生理学①	特別講義 II①			
		◎生命統計情報学②	データ解析基礎②					
			食品成分分析学②					
	1 2 単位	17単位	2 0 単位	16単位	15単位	12単位	8 単位	2 単位

赤:専門基礎科目(学部共通科目) 青:専門基礎科目(理系共通科目) 黒:専門発展科目 紫:専門特別科目 ◎は必修 ●は選択必修 無印は選択

【卒業必要単位数】 124単位以上

〔全学共通教育科目〕

人間形成科目部門:2単位以上 語学教育科目部門:14単位以上 情報・数理教育科目部門:2単位 教養教育科目部門:10単位以上

合計で32単位以上修得

〔専門科目〕

専門基礎科目部門:16単位(学部共通8単位、理系共通8単位) 専門発展科目部門:44単位 専門特別科目部門:10単位

合計で92単位以上修得

※こちらは令和5年度最新の履修モデルです。それ以前の年度の履修モデルについては、学科にお問い合わせください。

「生命工学科](微生物・食品モデル)

生命機能を理解し、その利用技術を学ぶ

- バイオを応用したものづくりに興味がある
- ・発酵産業・食品分野で活躍する技術者になりたい
- バイオテクノロジーを勉強したい

得られる知識・スキル

- ・細胞培養とバイオプロセスの技術
- ・細胞、遺伝子、発生の知識と応用
- ・微生物と食、健康に関する知識
- ・食品衛生に関する知識

活躍できるフィールド

・医療関連産業、食品産業、発酵産業、

· 農業関係法人、公務員

その他の進路

· 大学院進学等

【専門科目履修モデル】

年 次	1 年次		2年次		3年次		4年次	
	前期	後期	前期	後期	前期	後期	前期	後期
	◎共生科学入門②	◎生命研究倫理学①	基礎統計学②	●生物有機化学②	●技術英語②	●バイオインフォマティクス②	◎生命工学卒業論文⑥	(生命工学卒業論文)
	◎生命環境基礎ゼミ②	◎生物資源実習①	基礎統計学演習②	◎発生工学②	◎化学実験②	●分子発生	◎科学英語演習 I②	◎科学英語演習 II②
	◎生物学概論②	食物科学入門②	動物解剖生理学②	●応用微生物学 II②	◎生化学実験②	· 幹細胞生物学②		
	◎基礎数学②	◎基礎解析学②	◎細胞生理学②	◎生化学 II②	◎微生物学実験②	◎細胞生物学実験②		
	◎基礎数学演習②	◎基礎有機化学②	◎応用微生物学 I ②	◎分子生物学 II②	◎分子生物学実験②	◎発生工学実験②		
	基礎環境化学②	◎基礎生化学②	◎生化学 I②	●構造生物学②	食品微生物学②	◎生命工学研究室実習①		
		生物分析化学②	◎分子生物学 I②	基礎栄養学②	農作物生理学②	農作物病理学②		
		◎基礎微生物学②	◎生物化学工学②	食品加工学②	インターンシップ゜ I ①	食品衛生学②		
		◎創薬概論①	●生命科学・医学の		特別講義 II①	特別講義 III①		
		◎生命統計情報学②	データ解析基礎②					
			食品成分分析学②					
	1 2 単位	17単位	2 0 単位	16単位	16単位	1 4 単位	8 単位	2 単位

赤:専門基礎科目(学部共通科目) 青:専門基礎科目(理系共通科目) 黒:専門発展科目 紫:専門特別科目 ◎は必修 ◉は選択必修 無印は選択

【卒業必要単位数】 124単位以上

〔全学共通教育科目〕

人間形成科目部門:2単位以上 語学教育科目部門:14単位以上 情報・数理教育科目部門:2単位 教養教育科目部門:10単位以上

合計で32単位以上修得

〔専門科目〕

専門基礎科目部門:16単位(学部共通8単位、理系共通8単位) 専門発展科目部門:44単位 専門特別科目部門:10単位

合計で92単位以上修得

※こちらは令和5年度最新の履修モデルです。それ以前の年度の履修モデルについては、学科にお問い合わせください。

[生命工学科](バイオ・メディカルデータサイエンス特別コース(BMDS コース)モデル)

生命機能を理解し、その利用技術を学ぶ

- バイオを応用したものづくりに興味がある。
- ・メディカルデータサイエンス分野で活躍する 技術者になりたい
- バイオテクノロジーを勉強したい

得られる知識・スキル

- ・細胞培養とバイオプロセスの技術
- ・細胞、遺伝子、発生の知識と応用
- データサイエンスに関する知識
- ・医学に関する知識

活躍できるフィールド

・医療関連産業、製薬産業、情報産業、・公務員

その他の進路

· 大学院進学等

【専門科目履修モデル】

年 次	1 年次		2年次		3年次		4年次	
	前期	後期	前期	後期	前期	後期	前期	後期
	◎共生科学入門②	◎生命研究倫理学①	基礎統計学②	生物有機化学②	◎生命工学データサイエンス②	◎バイオインフォマティクス②	◎生命工学卒業論文⑥	(生命工学卒業論文)
	◎生命環境基礎ゼミ②	◎生物資源実習①	基礎統計学演習②	◎発生工学②	◎実践バイオ・メディカル	分子発生・幹細胞生物学②	◎科学英語演習 I②	◎科学英語演習 II②
	◎生物学概論②	◎基礎解析学②	◎動物解剖生理学②	応用微生物学 II②	データサイエンス(通年)②	◎細胞生物学実験②		
	◎基礎数学②	◎基礎有機化学②	◎細胞生理学②	生化学 II②	技術英語②	◎発生工学実験②		
	◎基礎数学演習②	◎基礎生化学②	応用微生物学I②	◎分子生物学 II②	◎化学実験②	◎生命工学研究室実習①		
	基礎環境化学②	生物分析化学②	生化学 I②	構造生物学②	◎生化学実験②	◎大規模生命情報解析学①		
		◎基礎微生物学②	◎分子生物学 I②	●基礎神経生理学①	◎微生物学実験②	特別講義 III①		
		◎創薬概論①	◎生物化学工学②	●基礎人体生理学①	◎分子生物学実験②			
		◎生命統計情報学②	◎生命科学・医学の		機能成分学②			
			データ解析基礎②		インターンシップ [°] I①			
			●基礎免疫学①		特別講義I①			
			●基礎薬理学①		特別講義 II①			
			●基礎神経生化学①					
	12単位	15単位	2 1 単位	14単位	19単位	1 1 単位	8 単位	2 単位

赤:専門基礎科目(学部共通科目)青:専門基礎科目(理系共通科目)黒:専門発展科目 緑:BMDSコース科目 紫:専門特別科目 ◎は必修 ●は選択必修 無印は選択

【卒業必要単位数】 124単位以上

〔全学共通教育科目〕

人間形成科目部門:2単位以上 語学教育科目部門:14単位以上 情報・数理教育科目部門:2単位 教養教育科目部門:10単位以上

合計で32単位以上修得

〔専門科目〕

専門基礎科目部門:16単位(学部共通8単位、理系共通8単位) 専門発展科目部門:44単位 専門特別科目部門:10単位

合計で92単位以上修得

※こちらは令和5年度最新の履修モデルです。それ以前の年度の履修モデルについては、学科にお問い合わせください。