	[Title]			[Instructor]		
System Solution Engineering			Masakazu Takahashi / Yoshimichi Watanabe			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417090	2	Information and Mechanical System Engineering	2nd Semester	Mon./IV	Japanese	

System solution engineering is a research domain which aims at construction of the business model based on information communication technology. Nowadays, the system solution is used as the word with the wide meaning which includes system development, construction of information infrastructure, security measures, consulting of the problems concerning business management.

This course develops the outline of system solution engineering, the fundamental knowledge to construct new business model or system, fundamental knowledge and techniques and skills for providing the solution services, analytical problems solving, design-problem solving, and the quality assurance of system solution.

[Objectives]

- 1. to understand the fundamental knowledge.
- 2. to understand the technology and skill which are needed in order to provide solution services.
- 3. to understand analytical problem solving and design-problem solving
- 4. to understand the quality assurance of system solutions
- 5. to understand matters required in order to develop a high quality solution and to acquire the means for constructing such a solution

[Requirements]

a grounding in fundamental knowledge of software engineering, information processing, and quality management

[Evaluation]

report: 50% discussion: 50%

[Textbooks]

[References]

- 1. Concept of System Solution
- 2. Basic Technologies Supporting System Solution
 - (1) Information technology
 - (2) Analytical problem solving and design-problem solving
 - (3) Quality assurance and customer satisfaction
- 3. Practical system solutions
 - (1) The solution in a computer vender
 - (2) The solution in a software provider
 - (3) The solution in an information communication common carrier
- 4. Future works of system solution

	[Title]			[Instructor]			
Advanced Computing Systems			Tomo Munehisa / Tomohiro Suzuki				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417130	2	Information and Mechanical System Engineering	1st Semester	Mon./II	Japanese		

It is required to use the high-performance computer for recent large-scale scientific computing. In order to squeeze the performance of the latest computer, we should understand its architecture.

Many scientific computing are summarized to solve a linear system. Various algorithms are developed to solve a large-scale linear system.

In this lecture, we aim to learn the technique and the knowledge of various large-scale scientific computing with high-performance computer.

[Objectives]

- 1. To understand the computer architecture to optimize the implementation of scientific computing
- 2. To learn the technique of optimization
- 3. To learn the mathematical basis of scientific computing

111.00	uirement	51
LIVO	OLLE CILICITO.	~_1

Programming skill (C or C++)

[Evaluation]

Homework: 50% Presentation: 50%

[Textbooks]

[References]

- 1. Introduction
- 2. Processor architecture of high-performance computer
- 3. Application technology of parallel computer
- 4. Solving linear system of dense matrices
- 5. Solving linear system of sparse matrices 1
- 6. Solving linear system of sparse matrices 2
- 7. Solving eigenvalue problem for general symmetric matrices
- 8. Solving eigenvalue problem for general non-symmetric matrices 1
- 9. Solving eigenvalue problem for general non-symmetric matrices 2
- 10. Implementation and optimization 1
- 11. Implementation and optimization 2
- 12. Implementation and optimization 3
- 13. Presentation 1
- 14. Presentation 2
- 15. Presentation 3

[Title]			[Instructor]			
Advanced Computer Networks			Hidetoshi Mino			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417140	2	Information and Mechanical System Engineering	2nd Semester	Mon./II	Japanese	

In this course students learn principles and design methodologies in computer networks through discussions and hands-on labs. We focus on redundancy and dependability of large-scale networks, and students will acquire essential knowledge and skills needed to be a network administrator in large scale campuses or in network service providers. We also deal with multicast technologies, Quality of Service, security issues, and IPv6 transition strategies, which have greater importance in the near future Internet.

[Objectives]

- 1. to be able to design, implement, and troubleshoot intermediate-scale computer networks.
- 2. to be able to address security issues in modern computer networks.

[Requirements]

Students are expected to have knowledge of IP routing and IPv4 addressing.

[Evaluation]

report: 50% discussion: 50%

[Textbooks]

Online materials will be provided.

[References]

- 1. Routing protocols
- 2. LAN protocols
- 3. Network design expandability
- 4. Network design redundancy and high availability
- 5. Multi-casting
- 6. QoS(Quality of Service)
- 7. VPN(Virtual Private Network)
- 8. IPv6 and its transition technologies

[Title]			[Instructor]		
Semantic Media Processing			Ryutarou Ohbuchi, Yoshimi Suzuki, Tsutomu Tanzawa, Hiromitsu Nishizaki		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417150	2	Information and Mechanical System Engineering	1st Semester	Mon./III	Japanese

A student who attends this course would learn methodologies and techniques for analysis, comparison, retrieval, classification, recognition, and understanding of data in various media data types, including text, audio, and image.

[Objectives]

Understanding of fundamental methodologies and techniques for analysis, comparison, retrieval, classification, recognition, and understanding of data in various media data types, including text, audio, and image.

[Requirements]

The student is expected to have graduate-level knowledge and skill in linear algebra, information theory, programming, algorithms and data structure, and also in machine learning. In addition, the students is expected to know methods to process one or more of the audio, image, and text media types.

[Evaluation]

Report, project presentation: 50%

Discussion:50%

Students are graded by the project report and presentation, in addition to class contribution in the form of discussion, etc.

[Textbooks]

[References]

Reading materials will be given by the instructors.

- 1. Introduction
- 2, 3, 4. Analyzing multiple media data types
- 5. Project announcement
- 6, 7, 8, 9. Machine learning for media data analysis
- 10, 11, 12 Semantic media processing
- 13, 14, 15 Project presentation

	[Title]			[Instructor]			
Advanced Optical Sensing and Control Engineering			Satoshi Honma				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417291	2	Information and Mechanical System Engineering	1st Semester	Fri./II	English/ Japanese		

Optical network and measurement systems are used in a highly information-based society. The systems are constructed of various optical sensors and controlling devices. It is important to study characteristic of light for understanding the mechanism of optical sensing and controlling device.

The controlling method of optical intensity, phase, and direction are introduced in this course. In particular, electro-optic effect, non-linear optical effect, holography is discussed. The applications to optical sensing, measuring, memory, and communications are also introduced.

[Objectives]

- 1. to understand optical characteristic in free space and optical fiber
- 2. to understand mechanism of the optical sensor and optical controller

[Requirements]

a grounding in optics and electromagnetism

[Evaluation]

homework: 20% examination: 40% reports: 40%

[Textbooks]

Ammon Yariv: Optical Electronics in Modern Communications, Oxford Series in Electrical and Computer Engineering, 2000 年(in English)

もしくは

Ammon Yariv, 多田 邦雄, 神谷 武志 (翻訳); 光エレクトロニクス 基礎編、丸善、2000 年(in Japanese) Ammon Yariv, 多田 邦雄, 神谷 武志 (翻訳); 光エレクトロニクス 展開編、丸善、2000 年(in Japanese).

[References]

- 1. Introduction
- 2. Maxwell equations
- 3. Wave equation and propagation of the light
- 4. Propagation of light in free space
- 5. Propagation of light in optical fiber
- 6. Propagation of light in periodic structure
- 7. Electro-optic effect
- 8. Photorefractive effect
- 9. Holographic technology
- 10. Optical storage with holographic technology
- 11. Optical image processing with holographic technology
- 12. Optical sensing with plastic optical fiber
- 13. Introduction of advanced optical sensor
- 14. Introduction of advanced optical processing
- 15. Final examination

	[Title]			[Instructor]			
Advanced Communication Systems			Masanori Hanawa				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417320	2	Information and Mechanical System Engineering	1st Semester	Mon./II	English/ Japanese		

This lecture treats the advanced signal processing techniques used in modern high speed digital communication systems. Behavior of communication systems in the presence of noise, optimal signal detection theory, linear equalizers, various adaptive algorithms and adaptive equalizers, adaptive antennas may be discussed.

[Objectives]

- 1. Being able to explain the basic concept of the random variables and random processes
- 2. Being able to explain behavior of analog communication systems in the presence of noise
- 3. Being able to explain behavior of digital communication systems in the presence of noise
- 4. Being able to explain optimal signal detection theory
- 5. Being able to explain linear equalizers
- 6. Being able to explain the steepest decent algorithm
- 7. Being able to explain working principle of the LMS algorithm
- 8. Being able to explain working principle of the normalized LMS algorithm
- 9. Being able to explain working principle of the RLS algorithm

[Requirements]

Knowledge on Fourier analysis, linear signals and systems, basic theories on communication systems, fundamental digital signal processing techniques is required.

[Evaluation]

Oral interviews will be given several times during the semester

[Textbooks]

B. P. Lathi, Modern digital and analog communication systems 3rd Ed., Oxford University Press, 1998 Simon Haykin, Adaptive filter theory 4th Ed., Prentice Hall, 2002

[References]

Supplied arbitrarily when needed

- 1. Random Variables, central limit theorem, correlation, linear mean square estimation
- 2. From random variables to random process, PSD of random processes, multiple random processes, transmission of random processes through linear systems, bandpass random processes, Wiener-Hopf filtering
- 3. Behavior of analog communication systems in the presence of noise
- 4. Behavior of digital communication systems in the presence of noise
- 5. Optimal signal detection
- 6. Lear equalizers
- 7. Steepest decent method
- 8. LMS algorithm
- 9. Normalized LMS algorithm
- 10. RLS algorithm
- 11. Related topics

	[Title]			[Instructor]			
Advanced VLSI Circuit Engineering			Takahide Sato				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417330	2	Information and Mechanical System Engineering	2st Semester	Wed./II	English/ Japanese		

In these days, integrated circuits are widely used for various products, not only electronic devices such as a smart phone and a personal computer, but also automobile and consumer electronics applications. Integrated circuits are one of the most significant technologies supporting the sophisticated information society.

Engineers who understand the process technology of CMOS VLSI and can design integrated circuits are strongly desired. This lecture deals with the latest CMOS integrated circuits, circuit techniques, design examples, and so on.

[Objectives]

- 1. to understand basic of RF circuits.
- 2. to understand basic of a digital wireless communication systems.
- 3. to explain principle of Low noise amplifiers, Power amplifiers, mixers, voltage controlled oscillators, PLL, variable gain amplifiers, analog filters, ADC and DAC.

[Requirements]

Basic knowledge of electric circuit, electronic circuit and circuit theory

[Evaluation]

Report: 100%

[Textbooks]

Printed materials about lecture topics will be distributed during the lecture.

[References]

- 1. RF circuit
- 2. Basic of digital wireless communication systems
- 3. Integrated circuits
- 4. MOS transistor and passive elements
- 5. Low noise amplifiers
- 6. Power amplifiers
- 7. Mixers
- $8.\ Voltage\ controlled\ oscillators$
- 9. Phase lock loop
- 10. Voltage controlled amplifiers
- 11. Analog filters
- 12. Analog to digital convertors
- 13. Digital to analog convertors
- 14. Digital interfaces

	[Title]			[Instructor]			
Advanced Signal Processing			Makoto Ohki				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417340	2	Information and Mechanical System Engineering	2nd Semester	Fri./II	English/ Japanese		

This lecture treats topics of signal processing engineering, especially multi-dimensional signal processing and adaptive signal processing.

[Objectives]

- 1. to explain multi-dimensional signals
- 2. to explain multi-dimensional linear transforms such as the Fourier transform
- 3. to explain the multi-dimensional sampling theorem
- 4. to describe multi-dimensional systems using the transfer function or the state-space model
- 5. to explain how multi-dimensional filters work
- 6. to explain how fundamental multi-dimensional adaptive algorithms work

[Requirements]

fundamental knowledge of signal processing such as Fourier transform, Laplace transform, z-transform, the concept of filters

[Evaluation]

report: 100%

[Textbooks]

[References]

Woods, John W.: Multidimensional Signal, Image, and Video Processing and Coding (second edition), Academic Press, 2012.

- 1. Multi-dimensional signals
- 2. Multi-dimensional Fourier transform
- 3. Multi-dimensional sampling theorem
- 4. Multi-dimensional Laplace transform and z-transform
- 5. Multi-dimensional systems
- 6. Multi-dimensional FIR filters
- 7. Multi-dimensional IIR filters
- 8. Multi-dimensional adaptive filters

	[Title]			[Instructor]		
Lectures on Production Systems and Instrumentation Systems			Tsuyoshi Shimizu / Shigenobu Okazawa			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417490	2	Information and Mechanical Systems Engineering	1st Semester	Tue./II	English/ Japanese	

Production systems have strong relationship to manufacturing techniques. The primary objective of this course is to provide an introduction to several of the topics to study. The recent topics of production systems and instrumentation systems are discussed.

[Objectives]

- (1) to understand the recent interest in the production systems.
- (2) to understand the recent interest in the instrumentation systems.

[Requirements]

Students must have basic knowledge of mechanical systems engineering.

[Evaluation]

- 1. Quizzes and reports 50%
- 2. Oral presentation and discussion 50%

[Textbooks]

[References]

- 1. Introduction
- 2. Recent topic of Production systems
 - 2-1. Machining
 - 2-2. Mother machines
 - 2-3. Assembly & assembly tools
 - 2-4. Factory automation
 - 2-5. CAD, CAM, CAE
 - 2-6. Production & environment
 - 2-7. Student presentation I
- 3. Recent topic of Instrumentation systems
 - 3-1. Measurement tools
 - 3-2. Measurement systems
 - 3-3. Image processing systems
 - 3-4. Stochastic data processing
 - 3-5. Feed back to factory automation
 - 3-6. Uncertainty
 - 3-7. Student presentation II

	[Title]			[Instructor]			
Advanced Thermo-Physical Engineering			Tetsuaki Takeda / Koji Toriyama/Shumpei Funatani				
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417500	2	Information and Mechanical System Engineering	2nd Semester	Wed./II	English/ Japanese		

It is a technologically important problem to increase the conversion efficiency of the thermal energy. Transport, storage, and conversion of the thermal energy are explained. In addition, effective utilization of thermal energy in the practical system is described.

[Objectives]

Generation, conversion, and use of the thermal energy can be understood.

The utilization efficiency of the thermal energy can be evaluated.

[Requirements]

Thermodynamics, Hydrodynamics, Thermal engineering, Fluid engineering, Numerical analysis

[Evaluation]

Report & examination: 60% Presentation skill: 40%

[Textbooks]

Not specify

[References]

Not specify

Distribute research papers, if necessary

- 1 Introduction
- 2-4 Production, storage, and transport of thermal energy
- 5 Evaluation of thermal energy system by theoretical approach and numerical analysis
- 6-8 Heat transport by thermal conduction, forced convection, natural convection, and thermal radiation
- 9-10 Conversion system of thermal energy and thermal efficiency
- 11-12 Renewable energy systems, such as solar thermal energy, wind energy, hydraulic energy, geothermal energy, etc.
- 13-14 Nuclear energy system and nuclear safety
- 15 Heat utilization systems such as thermoelectric conversion element, ground source heat pump system, etc.

		[Title]	[Instructor]			
	Turbulent Transport Engineering			Hiroyuki Tsunoda / Yoshinobu Yamamoto		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417510	2	Information and Mechanical System Engineering	2nd Semester	Mon./III	English/ Japanese	

Many of practical flows appearing in the field of mechanical engineering are turbulent of high Reynolds numbers. Turbulent flow is known to have remarkably effective transport ability in comparison with laminar flow. In order to understand physical features of the turbulent flow, students will study the fluid-mechanical difference between laminar and turbulent flows, flow instability problems related with the turbulence transition and the statistical properties of turbulence. Then, the fundamental ideas how the turbulent flow is statistically described are discussed in the case of isotropic turbulence for which theoretical approaches have been completed as being most elementary and simplest turbulent flow. These statistical techniques for the isotropic turbulence can be applied to the analysis of more practical anisotropic turbulent shear flows such as pipe flow, boundary-layer flow or free shear flows. By investigating the momentum and thermal transport equations, students will learn experimental and numerical analysis methods for these flows.

[Objectives]

In the design and the development of various machines or apparatuses, there are many practical problems related with fluid engineering. This course aims to educate engineers who can manage these problems and moreover who have an ability to apply their knowledge to the creation of new technology. For this objective, students are expected to complete the following goals:

- 1. to understand the fundamental idea of turbulence
- 2. to understand the statistical methods for analyzing turbulent flows and to apply them to practical flows
- 3. to discuss turbulent flows based on the governing equations

[Requirements]

Overall knowledge on fluid engineering and fluid dynamics studied in the under-graduate and graduate courses, fundamental and applied knowledge on calculus, fundamental knowledge on vector calculus

[Evaluation]

homework: 80% presentation: 20%

[Textbooks]

[References]

- 1. Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers, Oxford Univ. press, 2004, ISBN 0198529481
- 2. 日野幹雄: 流体力学, 朝倉書店, ISBN 4254200668 (in Japanese).
- 3. Tennekes, H. and Lumley, J.L.: A First Course in Turbulence, The MIT press, 1972, ISBN 0262200198.
- 4. Pope, S.B.: Turbulent Flows, Cambridge University Press, 2000, ISBN 0521598869.

- 1. Introduction
- 2. Laminar and turbulent flows #1
- 3. Laminar and turbulent flows #2
- 4. Flux and turbulent transport
- 5. Isotropic turbulence #1
- 6. Isotropic turbulence #2
- 7. Reynolds equations
- 8. Turbulent shear flows
- 9. Turbulent flow in pipe
- 10. Boundary layer
- 11. Free shear flows
- 12. Several turbulence models and DNS
- 13. Measurement techniques of turbulent flows #1
- 14. Measurement techniques of turbulent flows #2
- 15. Summary

	[Title]			[Instructor]			
Bio-Mechanics and Materials Engineering				o Nakayama asutake Hara			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417520	2	Information and Mechanical System Engineering	1st Semester	Fri./I	Japanese		

- 1. In the first half of the period, a lecture is carried out about biomechanics, medical engineering, welfare engineering and various kinds of biomedical measurement methods.
- 2. In the latter half of the period, a lecture is carried out about industrial materials. The innovative and highest production technology will be lectured together with a recycling technology.

[Objectives]

- 1. to bring up the mechanical engineer who is able to do the applied research on biomechanics and medical engineering.
- 2. to bring up the mechanical engineer who is able to choose the structural materials based on scientific knowledge through the learning of the advanced and innovative technique.

[Requirements]

Students must have basic knowledge about mechanics of materials, and materials engineering.

[Evaluation]

- 1. Reports: 80%
- 2. Oral presentation and discussion: 20%

[Textbooks]

The document will be distributed appropriately.

[References]

Reference books will be announced during a lecture as needed.

- 1. Foundations of biomechanics and medical engineering
- 2. Mechanics of bone
- 3. Arthrosis, cartilage, ligament
- 4. Ultrasonic diagnostic device, X-ray diagnosis device, nuclear magnetic resonance images
- 5. Endoscope
- 6. Artificial heart, heart pace maker
- 7. Rehabilitation device, welfare device
- 8. Foundations of industrial and engineering materials
- 9. Steel
- 10. Copper alloys
- 11. Titanium alloys
- 12. Aluminum alloys
- 13. Magnesium alloys
- 14. Present state and future of recycle technology in metallic materials
- 15. Summary

	[Title]			[Instructor]			
Advanced Plasticity Engineering		Shoichiro Yoshihara					
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417521	2	Information and Mechanical System Engineerin	2nd Semester	Wed./III	English/ Japanese		

It is imperative to study plasticity forming in manufacturing for automotive components and several devises. Furthermore, we have to control stress and strain in order to avoid fracture and wrinkle during processes by new technology. In this class, the new technology from new published paper would be surveyed and learned for looking toward the future.

[Objectives]

Stress and strain Conditions of material should be understood. Moreover, fracture and wrinkle of material during processes could be evaluated by several references in the area of plasticity forming.

[Requirements]

Strength of Materials, Press Forming, Material Engineering

[Evaluation]

Report & examination: 60% Presentation skill: 40%

[Textbooks]

Not specify

[References]

Not specify

[Schedule]

1-3:Plasticuty Mechanics

Relationship between stress and strain

Yield Stress(von Mises and Tresca Yield criterion)

4-6:Press forming

Sheet metal forming

Forging

Bulge forming

Bending

7-9:Incremental forming

Sheet metal

Tube material

10-12: Tube forming

Tubehydro forming

Tube bending

13-15:Simulation Technology

	[Title]			[Instructor]			
Advanced Theory of Vibration Control			Atsushi Fu	ıjimori / Yosl	niyuki Noda		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417530	2	Information and Mechanical System Engineering	2nd Semester	Fri./II	Japanese		

Active vibration control techniques, for example, H infinity control, μ analysis and design and gain scheduling control, are introduced in the former part of this lecture. Some of them are given in MATLAB. In the latter part, analysis techniques of vibration characteristics using Fourier transform and Time-Frequency analysis are introduced.

[Objectives]

- 1. To learn active vibration control design technique using MATLAB.
- 2. To learn analysis of vibration characteristics using MATLAB.

[Requirements]

System control theories and robust control should be learnt for taking this class.

[Evaluation]

Report I: 50% Report II: 50%

[Textbooks]

Atsushi Fujimori: Robust Control, Corona Publishing, Tokyo, 2001 (in Japanese)

[References]

- K. Kogoh and T. Mita: Introduction to System Control Theory, Jikkyo Publishing, Tokyo, 1979 (in Japanese).
- D. Newland: An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Longman, 1993

- 1. Introduction
- 2. Review of linear system control theory
- 3. Review of robust control
- 4. H infinity control
- 5. µ analysis and design
- 6. Gain scheduling control
- 7. Active vibration control I
- 8. Active vibration control II
- 9. Review of Fourier transform
- 10. Analysis of vibration characteristics in frequency domain
- 11. Identification of vibration characteristics
- 12. Introduction of vibration systems with time varying characteristics
- 13. Vibration analysis by Time-Frequency analysis I
- 14. Vibration analysis by Time-Frequency analysis II
- 15. Vibration suppression control based on Time-Frequency analysis

[Title]				[Instructor]
Advanced Space Systems Engineering		Junichiro Aoyagi			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417531	2	Information and Mechanical System Engineering	1st Semester	Mon./II	Japanese

Spacecraft is one of the most complicated systems. Its design requires comprehensive technique and integration skill. This lecture learns components of a spacecraft, and space propulsion system. Mission design will be also studied.

[Objectives]

The following subjects should be well understood:

- * Design concept of a spacecraft and its mission,
- * Spacecraft subsystems and its required specification,
- * Principle of space propulsion and orbit transfer.

[Requirements]

Knowledge of dynamics, mathematics and comprehensive mechanical engineering

[Evaluation]

Repot30%

Presentation70%

[Textbooks]

Ronald W. Humble, Gary N. Henry, Wiley John Larson, Spacecraft Systems Engineering, McGraw-Hill, 0070313202

George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, AIAA, 1563475243

[References]

Peter Fortescue, Graham Swinerd and John Stark, Spacecraft Systems Engineering, Wiley, 9780470750124 George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, Wiley, 0470080248

- 1. Introduction: Space environment, Rocket, and Spacecraft
- 2. Rocket Fundamentals and Design Process
- 3. Mission Analysis
- 4. Spacecraft Components
- 5. Structures
- 6. Thermal Control
- 7. Power System
- 8. Attitude Control
- 9. Telecommunication, Command and Data System
- 10. Propulsion #1 Chemical Propulsion
- 11. Propulsion #2 Electric Propulsion
- 12. Propulsion #3 Advanced Propulsion
- 13. Mission Design Case Study
- 14. Research of State-of-the-Art Space Mission
- 15. Conclusion

	[Title]			[Instructor]			
Advanced Wave Application Engineering			Takaaki Is	shii / Toshiya	a Kitamura		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417710	2	Information and Mechanical System Engineering	2nd Semester	Wed./IV	English / Japanese		

Wave is basic physical phenomenon. A lot of applications are widely used in our society and understanding wave technology is very important. Deep and thorough understanding of the fundamentals and applications of wave is greatly expected in this course.

[Objectives]

1. to understand the fundamentals and applications of the wave

[Requirements]

Fundamental knowledge of the acoustics, physics, mathematics, chemistry, materials, mechanical engineering, electrics and electronic engineering, etc.

[Evaluation]

Report: 80% Attendance: 20%

[Textbooks]

None

[References]

- 1. 山田伸志, 黒崎茂, 小坂敏文, 松村志真秀, 吉村靖夫, 渡辺敏夫:振動工学入門, パワー社 2001 年 (in Japanese)
- 2. Kenji Uchino: Ferroelectric devices, Marcel Dekker (2000)
- 3. Kenji Uchino, Jayne Giniewicz: Micromechatronics, Marcel Dekker (2003)
- 4. 城戸健一: ディジタルフーリエ解析(II), コロナ社 2007年 (in Japanese)

- 1. Fundamentals and applications of ferroelectrics
- 2. Fundamentals and applications of ultrasonics
- 3. Fundamentals and applications of the acoustics
- 4. Measurements and applications of the analysis technology

	[Title]			[Instructor]			
Advanced Photon Engineering		Tetsuo Harimoto / Lianhua Jin		anhua Jin			
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417720	2	Information and Mechanical System Engineering	1st Semester	Mon./IV	Japanese		

Emphases of this course are on the development of ultrahigh intensity laser science and interaction of laser and materials. In addition, some numerical methods on the photon engineering, especially involving the UV laser generation using the second-harmonic generation and the optical chirped pulse parametric amplification. It meets the needs of many students with interests in the modern physics and provides students with a general feel for the subject of ultrahigh intensity laser science.

[Objectives]

To introduce students to the concept of photon and ultrahigh intensity laser science.

To introduce students to the generation mechanism of ultrashort laser pulses.

To allow students to learn the numerical method of the photon engineering.

To introduce students to the interaction of laser and materials.

[Requirements]

Electromagnetics, optics, and quantum mechanics.

[Evaluation]

Report: 80% Attendance: 20%

[Textbooks]

[References]

Amnon Yariv, Optical Electronics, Saunders College Publishing, 1991, ISBN:0030474442 Amnon Yariv, Quantum Electronics, John Wiley & Sons Inc., 1989, ISBN:0471609978

- 1. Generation of ultrashort and ultrahigh intensity laser pulses
- 2. Wavelength conversion of ultrahigh intensity laser pulses
- 3. Amplification of a cycle pulse
- 4. Measurement for ultra-broadband laser pulses
- 5. Design of photonics devices
- 6. Interaction of laser and materials
- 7. Simulation of photon engineering

[Title]			[Instructor]			
Instrumentation Applied Physics			Kats	suyoshi Wata	anabe	
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417740	2	Information and Mechanical System Engineering	1st Semester	Fri./I	Japanese	

Extreme measurements are often necessary to develop advanced technologies. Here extreme measurements mean to measure size of the nanoscale, extremely small current, femtosecond phenomena, for example. This lecture is intended to provide physical basis of those measurements.

[Objectives]

The objective is to understand physical basis of technologies in the schedule.

[Requirements]

It is advisable to know basics of dynamics, electromagnetism, quantum mechanics, laboratory experiments of physics and mechanical engineering.

[Evaluation]

- 1. Reports at the end of a semester (80%)
- 2. Usual exercises (20%)

[Textbooks]

We will suggest suitable articles.

[References]

We will suggest suitable articles.

- 1. The principle of electron microscopy Condensation of atoms and molecules
- 2. Fabrication of thin films
- 3. Fabrication of semiconductor hetero structures
- 4. Determination of crystal structures by X-ray diffraction measurements
- 5. Transmission Electron Microscope
- 6. Scanning Tunneling Microscope
- 7. In situ monitoring of the growth of thin films
- 8. Atomic force microscopy
- 9. Interactions of photons with matter (1)
- 10. Interactions of photons with matter (2)
- 11. Emission devices
- 12. Optical spectroscopy techniques (1)
- 13. Optical spectroscopy techniques (2)
- 14. Ultrafast phenomena in spectroscopy
- 15. Summary

	[Title]			[Instructor]			
Advanced Mechatronics				buyuki Furu detsugu Ter	•		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]		
417760	2	Information and Mechanical Systems Engineering	1st Semester	Wed./II	Japanese		

Learning about the mechanism and control of robots by the latest robotics papers, then the design method of robots will be discussed.

[Objectives]

- (1) to understand the structure of robot mechanism and be able to design various robots.
- (2) to understand professional item of robot control technology.
- (3) to understand the latest trends in robotics research

[Requirements]

Grounding in calculus, algebra, knowledge of kinematics, dynamics, mechanical design and material, assuming knowledge of robotics. Also and in some cases, the materials are written in English.

[Evaluation]

- 1. Small test and Presentation 80%
- 2. Routine test and Report 20%

[Textbooks]

Textbook is not used. Materials will be provided.

[References]

- 1. Control system design, McGRAW-HILL, ISBN:0486442780
- 2. SIGNALS AND LINEAR SYSTEMS, Jhon Wiley & Sons, ISBN:0471838217
- 3. 現代制御理論入門, コロナ社, ISBN:4339031615 (In Japanese)
- $4\,.$ Mark E. Rosheim, Robot Evolution -The Development of Authrobotics-, John Wiley & Sons, Inc., ISBN:0471026220

[Schedule]

Do a lecture on the content of the following from the perspective of designing a robot.

- 1. Mechanism of the robot (1-5 times)
- To discuss about the forward kinematics and the inverse kinematics solution and the derivation techniques of three-dimensional mechanism with the singular points analysis of serial and parallel robots, focusing on the differences in particular.
- 2. Robot control (6 to 10)
- To discuss about the control algorithm of Point to Point and Continuous path control, explaining about the practical path control and interpolation method. Communication systems and servo mechanism with the examples be explained.
- 3. Intelligent Robots (11 times to 15 times)
- To discuss how intelligent robot will be constructed using smart sensor system, and be explained a variety of image recognition techniques and algorithms in robot.

	[Title]			[Instructor]
Advanced Exercises for Information and Mechanical Systems Engineering I				Each Profess	sor
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417900 A	2	Information and Mechanical System Engineering(system solution)	4		Japanese

Making technical decisions is a necessary part of planning and design of solution systems by applying engineering techniques. The elements of the decision model and the analyses involved in a decision problem are developed in this course.

[Objectives]

- 1. to understand the decision method and its application
- 2. to solve the engineering decision problems by the decision method

[Requirements]

a basic knowledge on Information and Mechanical System Engineering, especially system solutions

[Evaluation]

homework: 20%

midterm examination : 40% final examination : 40%

[Textbooks]

[References]

- 1. Introduction
- 2. Decision method: theory 1
- 3. Decision method: theory 2
- 4. Decision method: theory 3
- 5. Decision method: application 1
- 6. Decision method: application 2
- 7. Decision method: application 3
- 8. Decision method: application 3
- 9. Midterm examination
- 10. Decision method in real world 1
- 11. Decision method in real world 2
- 12. Decision method in real world 3
- 13. Decision method in real world: Practice 1
- 14. Decision method in real world: Practice 2
- 15. Final examination

		[Title]		[Instructor]
Advar	nced Exercise	es for Information and Mechanical Systems Engineering I	Each academic supervisors		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417900 C	2	Information and Mechanical System Engineering Dept. of Mechanical Design System		Fri./III	English/ Japanese
extensive t work. [Objectives	a lecture-sty echnical kno]	rle class by the graduate advisor directing you will be will b			
[Requireme Fundament		ge related to your research.			
[Evaluation Comprehen [Textbooks]	isive evaluat	cion from progress of the problem solution, report	s and an answe	er to a quest	sion : 100%
Student	es by an instr chooses a vic	ructor on the specific assignments. ce-graduate advisor besides the chief-advisor, an research work.	ıd can ask for a	advice about	presentation

		[Title]		[Instructor]	
Advar	nced Exercise	es for Information and Mechanical Systems Engineering I	Each academic supervisors			
[Code]	[Credits]	[Program]	[Semester]	[Semester] [Hours]		
417900 D	2	Information and Mechanical Systems Engineering		Fri./III	Japanese	
	nd purpose] ure, mechan	ical engineering and information engineering v	vill be taught.			
Objectives We are air completion	ned at acqu	iring practical knowledge as an engineer des	serving to be a	person of P	h.D. program	
	mental knov	wledge of calculus, algebra, kinematics, mac llso, you need English to read the reference pap		lesign and	mechanics of	
[Textbooks]	ports:100%					
		ence papers if necessary.				
[References None.	<u>s]</u>					
[Schedule]						
A theme is	chosen amor	ng a thing related to a specialized field of each a	adviser.			

	[Title]			[Instructor	.]
Advan	Advanced Exercises for Information and Mechanical Systems Engineering I			Each Profess	sor
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417900 E	2	Information and Mechanical System Engineering(system solution)			Japanese

Making technical decisions is a necessary part of planning and design of solution systems by applying engineering techniques. The elements of the decision model and the analyses involved in a decision problem are developed in this course.

[Objectives]

- 1. to understand the decision method and its application
- 2. to solve the engineering decision problems by the decision method

[Requirements]

a basic knowledge on Information and Mechanical System Engineering, especially system solutions

[Evaluation]

homework: 20%

midterm examination : 40% final examination : 40%

[Textbooks]

[References]

- 1. Introduction
- 2. Decision method: theory 1
- 3. Decision method: theory 2
- 4. Decision method: theory 3
- 5. Decision method: application 1
- 6. Decision method: application 2
- 7. Decision method: application 3
- 8. Decision method: application 3
- 9. Midterm examination
- 10. Decision method in real world 1
- 11. Decision method in real world 2
- 12. Decision method in real world 3
- 13. Decision method in real world: Practice 1
- 14. Decision method in real world: Practice 2
- 15. Final examination

		[Title]		[Instructor]
Advar	nced Exercis	ses for Information and Mechanical Systems Engineering I	Each academic supervisor		
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417900 G	2	Information and Mechanical System Engineering Dept. of Mechanical Design System		Fri./III	English/ Japanese
extensive twork. [Objectives	echnical kn]	yle class by the graduate advisor directing you owledge, assignments is not necessarily directly nowledge through literatures and discussion.			
[Requireme Fundamen		ge related to your research.			
Comprehen [Textbooks]		tion from progress of the problem solution, repor	ts and an answe	er to a ques	tion : 100%
[Schedule] The lecture	es by an inst	ructor on the specific assignments. ce-graduate advisor besides the chief-advisor, ar e research work.	nd can ask for a	advice abou	t presentation

		[Title]		[Instructor]
Adva	nced Exercis	es for Information and Mechanical Systems Engineering I	Each academic supervisor		ervisors
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language o instruction]
417900 H	2	Information and Mechanical Systems Engineering		Fri./III	Japanese
[Outline ar	nd purpose]				
At this lect	ure, mechan	ical engineering and information engineering wi	ll be taught.		
	1				
[Objectives		***************************************		C D	1 D
we are an completion	_	iring practical knowledge as an engineer dese	rving to be a	person of P	h.D. program
[Requireme	ents]				
		wledge of calculus, algebra, kinematics, mach		design and	mechanics of
materials a	re needed. A	dso, you need English to read the reference pape	rs.		
[Evaluation	n]				
	ports:100%				
20,014116	ports room				
[Textbooks]					
		ence papers if necessary.			
References	s]				
References					
None.					
=					
None.					
=					
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ad	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None.	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		
None. [Schedule]	chosen amoi	ng a thing related to a specialized field of each ac	lviser.		

[Title]			[Instructor]		
Advanced Exercises for Information and Mechanical Systems Engineering II				Each Profess	sor
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417910 A	2	Information and Mechanical System Engineering(system solution)		Tue./I	Japanese

Making technical decisions is a necessary part of planning and design of solution systems by applying engineering techniques. The elements of the decision model and the analyses involved in a decision problem are developed in this course.

[Objectives]

- 1. to understand the decision method and its application
- 2. to solve the engineering decision problems by the decision method

[Requirements]

a basic knowledge on Information and Mechanical System Engineering, especially system solutions

[Evaluation]

homework: 20%

midterm examination : 40% final examination : 40%

[Textbooks]

[References]

- 1. Introduction
- 2. Decision method: theory 1
- 3. Decision method: theory 2
- 4. Decision method: theory 3
- 5. Decision method: application 1
- 6. Decision method: application 2
- 7. Decision method: application 3
- 8. Decision method: application 3
- 9. Midterm examination
- 10. Decision method in real world 1
- 11. Decision method in real world 2
- 12. Decision method in real world 3
- 13. Decision method in real world: Practice 1
- 14. Decision method in real world: Practice 2
- 15. Final examination

		[Title]		[Instructor]
Adva	nced Exercis	ses for Information and Mechanical Systems Engineering II	Each academic supervisors		ervisors
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417910 C	2	Information and Mechanical System Engineering Dept. of Mechanical Design System		Fri./IV	English/ Japanese
This is extensive twork. [Objectives	echnical kn	yle class by the graduate advisor directing you owledge, assignments is not necessarily directly nowledge through literatures and discussion.			
[Requirement Fundament [Requirement]		ge related to your research.			
[Evaluation Comprehen		tion from progress of the problem solution, report	s and an answe	er to a quest	ion: 100%
[Textbooks]				
[Reference	s]				
Student	chooses a vi	ructor on the specific assignments. ce-graduate advisor besides the chief-advisor, an e research work.	d can ask for a	advice about	presentation

Advan	ced Exercise	C. I.C			
[Code]		Engineering II			ervisors
	[Credits]	[Program]	[Semester]	[Hours]	[Language o instruction]
417910 D	2	Information and Mechanical Systems Engineering		Fri./IV	Japanese
Outline and As follow the taught.		Practice I, at this lecture, mechanical engineer	ing and inform	ation engin	eering will be
[Objectives]					
We are aim completion.		iring practical knowledge as an engineer desc	erving to be a	person of P	h.D. program
[Requireme	ntsl				
The fundar	nental knov	wledge of calculus, algebra, kinematics, mach lso, you need English to read the reference pape		design and	mechanics of
Evaluation	.]				
Several Rep	oorts :100%				
[Textbooks]					
	ribute refer	ence papers if necessary.			
[References]]				
None.					
[Schedule]					
A theme is o	chosen amor	ng a thing related to a specialized field of each a	dviser.		

[Title]			[Instructor]		
Advanced Exercises for Information and Mechanical Systems Engineering II				Each Profess	sor
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417910 E	2	Information and Mechanical System Engineering(system solution)		Tue./I	Japanese

Making technical decisions is a necessary part of planning and design of solution systems by applying engineering techniques. The elements of the decision model and the analyses involved in a decision problem are developed in this course.

[Objectives]

- 1. to understand the decision method and its application
- 2. to solve the engineering decision problems by the decision method

[Requirements]

a basic knowledge on Information and Mechanical System Engineering, especially system solutions

[Evaluation]

homework: 20%

midterm examination : 40% final examination : 40%

[Textbooks]

[References]

- 1. Introduction
- 2. Decision method: theory 1
- 3. Decision method: theory 2
- 4. Decision method: theory 3
- 5. Decision method: application 1
- 6. Decision method: application 2
- 7. Decision method: application 3
- 8. Decision method: application 3
- 9. Midterm examination
- 10. Decision method in real world 1
- 11. Decision method in real world 2
- 12. Decision method in real world 3
- 13. Decision method in real world: Practice 1
- 14. Decision method in real world: Practice 2
- 15. Final examination

		[Title]		[Instructor]
Advai	nced Exercis	ses for Information and Mechanical Systems Engineering II	Each academic supervisors		ervisors
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417910 G	2	Information and Mechanical System Engineering Dept. of Mechanical Design System		Fri./IV	English/ Japanese
extensive twork. [Objectives	a lecture-st echnical kn	yle class by the graduate advisor directing you owledge, assignments is not necessarily directly nowledge through literatures and discussion.			
[Requiremons Fundamen		ge related to your research.			
[Evaluation Compreher		tion from progress of the problem solution, reports	s and an answe	er to a quest	sion: 100%
[Textbooks]					
[References	s]				
Student	chooses a vi	ructor on the specific assignments. ce-graduate advisor besides the chief-advisor, and research work.	d can ask for a	advice about	presentation

		[Title]		[Instructor]
Advaı	nced Exercis	ses for Information and Mechanical Systems Engineering II	Each a	cademic sup	ervisors
[Code]	[Credits]	[Program]	[Semester] [Hours] [Languinstruc		
417910 H	2	Information and Mechanical Systems Engineering		Fri./IV	Japanese
Outline an	d purposel		"		II.
		Practice I, at this lecture, mechanical engineering	ng and inform	ation engin	eering will be
[Objectives]				
We are air completion		airing practical knowledge as an engineer deser	rving to be a	person of P	h.D. program
Doguinoma	ntal				
[Requireme				1	
		wledge of calculus, algebra, kinematics, machi Also, you need English to read the reference paper		design and	mechanics o
Evaluation					
	ports:100%				
	•				
[Textbooks]	1				
		rence papers if necessary.			
we will dis	ilibute lefei	refice papers if necessary.			
[References	s]				
None.					
[Schedule]					
	,				
A theme is	chosen amo	ng a thing related to a specialized field of each ad	viser.		

[Title]			[Instructor]		
Field Research of Information and Mechanical Systems Engineering				Each Profess	sor
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]
417920 A	2	Information and Mechanical System Engineering(system solution)			Japanese

Making technical decisions is quite important for planning and design of solution systems in a real world. The elements of the decision model and the process are developed in this course.

[Objectives]

- 1. to understand the decision method in a real world
- 2. to make practice of the decision in areal world

[Requirements]

a basic knowledge on Information and Mechanical System Engineering, especially system solutions

[Evaluation]

homework: 20%

 $\label{eq:midterm} \mbox{midterm examination} : 40\% \\ \mbox{final examination} : 40\% \\$

[Textbooks]

[References]

- 1. Introduction
- 2. Decision method: theory 1
- 3. Decision method: theory 2
- 4. Decision method: theory 3
- 5. Decision method: application 1
- 6. Decision method: application 2
- 7. Decision method: application 3
- 8. Decision method: application 3
- 9. Midterm examination
- 10. Decision method in real world 1
- 11. Decision method in real world 2
- 12. Decision method in real world 3
- 13. Decision method in real world: Practice 1
- 14. Decision method in real world: Practice 2
- 15. Final examination

	[Title]			[Instructor]		
Field Research of Information and Mechanical Systems Engineering			Each academic supervisors		ervisors	
[Code]	[Credits]	[Program]	[Semester]	[Hours]	[Language of instruction]	
417920 C	2	Information and Mechanical System Engineering Dept. of Mechanical Design System		/	Japanese	

The purpose of field research is to gain a better understanding of the knowledge that the student has acquired at this graduate school through the training of specialized skills in public offices and private companies.

[Objectives]

- 1. To conduct field research for more than two weeks.
- 2. To understand how knowledge learned in the course is useful in society.
- 3. To enhance your motivation of learning of specialized education and help your career after completion of the course.

[Requirements]

Having fundamental knowledge on the field of study, common sense and proper mental attitude as a member of the university.

[Evaluation]

Others(Training period, the evaluation from the internship host, internship report and presentation and so on): 100%

г	_				
ľ	Γev	th	n	∩k	S

			-
T)	c		
K O	$t \alpha v$	αn	ces

[Schedule]

1. Application process

There are two types of field research program: the program recommended by an academic supervisor and the program provided by the internship host.

- The program recommended by an academic supervisor
- Students should arrange an internship host and project with their academic supervisor. Then, they should communicate name of company and proposed period to the internship instructor. The internship instructor will apply for the host in cooperation with their academic supervisor.
- The program provided by the internship host

Students should collect the information about field research programs from the guidance of internship and the career center homepage and find a field research program in consultation with their academic supervisor. Then, they should apply to the educational affairs section.

2. During the field research program

Students should do their field research under the host.

3. Report and presentation

We will explain about the field research report and presentation in detail at the time of the guidance.

[Title] Field Research of Information and Mechanical Systems Engineering			[Instructor] Each academic supervisors		
417920 D	2	Information and Mechanical Systems Engineering	-	-	Japanese
The resear		velopment in cooperation with non-member org	ganizations, s	uch as a o	company or a
Objectives We are air completion	ned at acqu	uiring practical knowledge as an engineer deser	ving to be a	person of I	Ph.D. program
	mental kno	owledge of calculus, algebra, kinematics, machin Also, you need English to read the reference paper		lesign and	mechanics of
[Textbooks	ports and p	resentations: 100% with 60hours researches.			
[Reference: None.	s]				
[Schedule]					
A theme 1s	chosen amo	ong a thing related to a specialized field of each adv	viser.		